Boosting with Averaged Weight Vectors

Nikunj C. Oza

Computational Sciences Division
NASA Ames Research Center
Mail Stop 269-3
Moffett Field, CA 94035-1000, USA

oza@email.arc.nasa.gov

Abstract. AdaBoost [5] is a well-known ensemble learning algorithm
that constructs its constituent or base models in sequence. A key step
in AdaBoost is constructing a distribution over the training examples
to create each base model. This distribution, represented as a vector,
is constructed to be orthogonal to the vector of mistakes made by the
previous base model in the sequence [7]. The idea is to make the next
base model’s errors uncorrelated with those of the previous model. Some
researchers have pointed out the intuition that it is probably better to
construct a distribution that is orthogonal to the mistake vectors of all
the previous base models, but that this is not always possible [7]. We
present an algorithm that attempts to come as close as possible to this
goal in an efficient manner. We present experimental results demonstrat-
ing significant improvement over AdaBoost and the Totally Corrective
boosting algorithm [7], which also attempts to satisfy this goal.

1 Introduction

AdaBoost [5] is one of the most well-known and highest-performing ensemble
classifier learning algorithms [4]. It constructs a sequence of base models, where
each model is constructed based on the performance of the previous model on
the training set. In particular, AdaBoost calls the base model learning algorithm
with a training set weighted by a distribution.! After the base model is created,
it is tested on the training set to see how well it learned. We assume that the
base model learning algorithm is a weak learning algorithm [6]; that is, with high
probability, it produces a model whose probability of misclassifying an example
is less than 0.5 when that example is drawn from the same distribution used
to generate the training set. The point is that such a model performs better
than random guessing.? The weights of the correctly classified examples and

L If the base model learning algorithm cannot take a weighted training set as input,
then one can create a sample with replacement from the original training set accord-
ing to the distribution and call the algorithm with that sample.

2 The version of AdaBoost that we use was designed for two-class classification prob-
lems. However, it is routinely used for a larger number of classes when the base
model learning algorithm is strong enough to have an error less than 0.5 in spite of
the larger number of classes.



misclassified examples are scaled down and up, respectively, so that the two
groups’ total weights are 0.5 each. The next base model is generated by calling
the learning algorithm with this new weight distribution and the training set.
The idea is that, because of the weak learning assumption, at least some of
the previously misclassified examples will be correctly classified by the new base
model. Previously misclassified examples are more likely to be classified correctly
because of their higher weights, which focus more attention on them. Kivinen
and Warmuth [7] have shown that AdaBoost scales the distribution with the goal
of making the next base model’s mistakes uncorrelated with those of the previous
base model. It is well-known that ensembles need to have low correlation in their
base models’ errors in order to perform well [11].

Given this point, we would think, as was pointed out in [7], that AdaBoost
would perform better if the next base model’s mistakes were uncorrelated with
those of all the previous base models instead of just the previous one. It is
not always possible to construct a distribution consistent with this requirement.
However, we can attempt to find a distribution that comes as close as possi-
ble to satisfying this requirement. Kivinen and Warmuth [7] devised the Totally
Corrective boosting algorithm, which attempts to do this. However, they do not
present any empirical results. Also, they hypothesize that this algorithm will
overfit and; therefore, not perform well. This paper presents a new algorithm,
called AveBoost, which has the same goal as the Totally Corrective algorithm.
In particular, AveBoost calculates the next base model’s distribution by first
calculating a distribution the same way as in AdaBoost, but then averaging it
elementwise with those calculated for the previous base models. In this way, Ave-
Boost attempts to take all the previous base models into account in constructing
the next model’s distribution. In Section 2, we review AdaBoost and describe
the Totally Corrective algorithm. In Section 3, we state the AveBoost algorithm
and describe the sense in which our solution is the best one possible. In Sec-
tion 4, we present an experimental comparison of AveBoost with AdaBoost and
the Totally Corrective algorithm. Section 5 summarizes this paper and describes
ongoing and future work.

2 AdaBoost and Totally Corrective Algorithm

Figure 1 shows AdaBoost’s pseudocode. AdaBoost constructs a sequence of base
models h; for t € {1,2,...,T}, where each one is constructed based on the per-
formance of the previous base model on the training set. In particular, AdaBoost
maintains a distribution over the m training examples. The distribution d; used
in creating the first base model gives equal weight to each example (di; = 1/m
for all i € {1,2,...,m}). AdaBoost now enter the loop, where the base model
learning algorithm L is called with the training set and d;.?> The returned
model h; is then tested on the training set to see how well it learned. Training

3 As mentioned earlier, if L, cannot take a weighted training set as input, then we can
give it a sample drawn with replacement from the original training set according to
the distribution d induced by the weights.



AdaBOOSt({(mlz y1)7 e (mm; ym)}7Lb7T)
Initialize d;; = 1/m for all i € {1,2,...,m}.
Fort=1,2,...,T:

ht = Lb({(mhyl)) ey (mm;ym)}y dt)
Calculate the error of he : €r = 37, 1, 2,y 24,
If ¢, > 1/2 then,

set T'=1t — 1 and abort this loop.
Calculate distribution d¢41:

dt,-;.

dit1,; =di ;i X 2(1—et) A
i = Gl % otherwise.

Output the final hypothesis:
hyin(z) = argmax, ey ., )=y 1091 E

Fig. 1. AdaBoost algorithm: {(z1,y1),..., (Zm,ym)} is the training set, L; is the base

model learning algorithm, and T is the maximum allowed number of base models.

Totally Corrective AdaBoost({(z1,y1),...,(@m,¥ym)}, Ls, T)
Initialize d1; = 1/m for all i € {1,2,...,m}.
Fort=1,2,...,T:

hy = Lb({(wlyyl)y s ($m7ym)}7 dt)'
Calculate the mistake vector ug:

wei = { 1 if ht(a:i.) =Yy
’ —1 otherwise.
If d¢ - u¢ <0 then,
set T =t — 1 and abort this loop.
Calculate distribution dg41:
Initialize &1 =d;.

For j=1,2,...:
qj = argMmaX,.c(1,2,. .t} |d; - Ug; [
R 1+a--u .
Gj=hn(—="2).
l—dj-qu

For all i € {1,2,...,m},
djt1,i = ;%dj,iewp(—@jqu i)
where Z; = 37, cij,,-ezp(—&jqu,i).
Output the final hypothesis:
hyin(z) = argmax,cy Zt:ht(z)=y log—l;et .

Fig. 2. Totally Corrective Boosting algorithm: {(z1,y1),..., (€m,ym)} is the training
set, Ly is the base model learning algorithm, and 7' is the maximum allowed number

of base models.



examples misclassified by the current base model have their weights increased
for the purpose of creating the next base model, while correctly-classified train-
ing examples have their weights decreased. More specifically, if h; misclassifies
the ¢th training example, then its new weight di;1; is set to be its old weight
d,; multiplied by 2%, where ¢, is the sum of the weights of the examples that
h; misclassifies. AdaBoost assumes that Ly is a weak learner, i.e., ¢ < % with
high probability. Under this assumption, 21? > 1, so the ith example’s weight
increases (di+1,; > di,;)- On the other hand, if h; correctly classifies the ith ex-
ample, then d;;; ; is set to dy; multiplied by 2(1171), which is less than one by
the weak learning assumption; therefore, example i’s weight is decreased. Note
that d¢41 is already normalized:

D dig = 3% > diiI(he(i) # yi) + ST > di i (he(i) = yi)
i=1 i=1 i=1

1 1
=gt (1—e) =L
TR Tcu L)

Under distribution d;;;, the total weight of the examples misclassified by h;
and those correctly classified by h; become 0.5 each. This is done so that, by
the weak learning assumption, h. 1 will classify at least some of the previously
misclassified examples correctly. As shown in [1], this weight update scheme is
equivalent to the usual scheme [5] but is intuitively more clear. The loop con-
tinues, creating the T' base models in the ensemble. The final ensemble returns,
for a new example, the one class in the set of classes Y that gets the highest
weighted vote from the base models.

For all the base models h; (t € {1,2,....,T}) and the m training examples,
construct a vector u; € [—1,1]™ such that the ith element u; ; = 1 if h; classifies
the ith training example correctly (h¢(z;) = y;) and u;; = —1 otherwise. Kivi-

nen and Warmuth [7] pointed out that AdaBoost calculates dyy1 from d; such
that d¢y; - ug = 0. That is, the new distribution is created to be orthogonal to
the mistake vector of h;, which can be intuitively described as wanting the new
base model’s mistakes to be uncorrelated with those of the previous model. This
naturally leads to the question of whether one can improve upon AdaBoost by
constructing d;y1 to be orthogonal to the mistake vectors of all the previous
base models hi, ho, ...,k (ie., diyr -uy =0 for all ¢ € {1,2,...,¢}). However,
there is no guarantee that a probability distribution d;11 exists that satisfies all
the constraints. Even if a solution exists, finding it appears to be a very difficult
optimization problem [7]. The Totally Corrective Algorithm (figure 2) attempts
to solve this problem using an iterative method. The initial parts of the algo-
rithm are similar to AdaBoost. That is, the Totally Corrective Algorithm uses
the same d; as AdaBoost in creating the first base model and the next state-
ment checks that the base model error is less than 0.5. The difference is in the
method of calculating the weight distribution for the next base model. The To-
tally Corrective Algorithm starts with some initial distribution such as dj. It
then repeatedly finds the ¢; € {1,2,...,t} yielding the highest |(AiJ “Ug;|, and then





















